Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Omega ; 7(25): 21473-21482, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35785302

RESUMO

The O-acetyl (or acetate) derivative of the Aspidosperma alkaloid Jerantinine A (JAa) elicits anti-tumor activity against cancer cell lines including mammary carcinoma cell lines irrespective of receptor status (0.14 < GI50 < 0.38 µM), targeting microtubule dynamics. By exploiting breast cancer cells' upregulated transferrin receptor 1 (TfR1) expression and apoferritin (AFt) recognition, we sought to develop an AFt JAa-delivery vehicle to enhance tumor-targeting and reduce systemic toxicity. Optimizing pH-mediated reassembly, ∼120 JAa molecules were entrapped within AFt. Western blot and flow cytometry demonstrate TfR1 expression in cancer cells. Enhanced internalization of 5-carboxyfluorescein-conjugated human AFt in SKBR3 and MDA-MB-231 cancer cells is observed compared to MRC5 fibroblasts. Accordingly, AFt-JAa delivers significantly greater intracellular JAa levels to SKBR3 and MDA-MB-231 cells than naked JAa (0.2 µM) treatment alone. Compared to naked JAa (0.2 µM), AFt-JAa achieves enhanced growth inhibition (2.5-14-fold; <0.02 µM < GI50 < 0.15 µM) in breast cancer cells; AFt-JAa treatment results in significantly reduced clonal survival, more profound cell cycle perturbation including G2/M arrest, greater reduction in cell numbers, and increased apoptosis compared to the naked agent (p < 0.01). Decreased PLK1 and Mcl-1 expression, together with the appearance of cleaved poly (ADP-ribose)-polymerase, corroborate the augmented potency of AFt-JAa. Hence, we demonstrate that AFt represents a biocompatible vehicle for targeted delivery of JAa, offering potential to minimize toxicity and enhance JAa activity in TfR1-expressing tumors.

3.
Front Cell Dev Biol ; 10: 798590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386201

RESUMO

PIP5K1α has emerged as a promising drug target for the treatment of castration-resistant prostate cancer (CRPC), as it acts upstream of the PI3K/AKT signaling pathway to promote prostate cancer (PCa) growth, survival and invasion. However, little is known of the molecular actions of PIP5K1α in this process. Here, we show that siRNA-mediated knockdown of PIP5K1α and blockade of PIP5K1α action using its small molecule inhibitor ISA-2011B suppress growth and invasion of CRPC cells. We demonstrate that targeted deletion of the N-terminal domain of PIP5K1α in CRPC cells results in reduced growth and migratory ability of cancer cells. Further, the xenograft tumors lacking the N-terminal domain of PIP5K1α exhibited reduced tumor growth and aggressiveness in xenograft mice as compared to that of controls. The N-terminal domain of PIP5K1α is required for regulation of mRNA expression and protein stability of PIP5K1α. This suggests that the expression and oncogenic activity of PIP5K1α are in part dependent on its N-terminal domain. We further show that PIP5K1α acts as an upstream regulator of the androgen receptor (AR) and AR target genes including CDK1 and MMP9 that are key factors promoting growth, survival and invasion of PCa cells. ISA-2011B exhibited a significant inhibitory effect on AR target genes including CDK1 and MMP9 in CRPC cells with wild-type PIP5K1α and in CRPC cells lacking the N-terminal domain of PIP5K1α. These results indicate that the growth of PIP5K1α-dependent tumors is in part dependent on the integrity of the N-terminal sequence of this kinase. Our study identifies a novel functional mechanism involving PIP5K1α, confirming that PIP5K1α is an intriguing target for cancer treatment, especially for treatment of CRPC.

4.
Molecules ; 26(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500570

RESUMO

Thymoquinone (TQ) is the main biologically active constituent of Nigella sativa. Many studies have confirmed its anticancer actions. Herein, we investigated the different anticancer activities of, and considered resistance mechanisms to, TQ. MTT and clonogenic data showed TQ's ability to suppress breast MDA-MB-468 and T-47D proliferation at lower concentrations compared to other cancer and non-transformed cell lines tested (GI50 values ≤ 1.5 µM). Flow-cytometric analyses revealed that TQ consistently induced MDA-MB-468 and T-47D cell-cycle perturbation, specifically inducing pre-G1 populations. In comparison, less sensitive breast MCF-7 and colon HCT-116 cells exhibited only transient increases in pre-G1 events. Annexin V/PI staining confirmed apoptosis induction in MDA-MB-468 and HCT-116 cells, which was continuous in the former and transient in the latter. Experiments revealed the role of reactive oxygen species (ROS) generation and aneuploidy induction in MDA-MB-468 cells within the first 24 h of treatment. The ROS-scavenger NAD(P)H dehydrogenase (quinone 1) (NQO1; DT-diaphorase) and glutathione (GSH) were implicated in resistance to TQ. Indeed, western blot analyses showed that NQO1 is expressed in all cell lines in this study, except those most sensitive to TQ-MDA-MB-468 and T-47D. Moreover, TQ treatment increased NQO1 expression in HCT-116 in a concentration-dependent fashion. Measurement of GSH activity in MDA-MB-468 and HCT-116 cells found that GSH is similarly active in both cell lines. Furthermore, GSH depletion rendered these cells more sensitive to TQ's antiproliferative actions. Therefore, to bypass putative inactivation of the TQ semiquinone metabolite, the benzylamine analogue was designed and synthesised following modification of TQ's carbon-3 atom. However, the structural modification negatively impacted potency against MDA-MB-468 cells. In conclusion, we disclose the following: (i) The anticancer activity of TQ may be a consequence of ROS generation and aneuploidy; (ii) Early GSH depletion could substantially enhance TQ's anticancer activity; (iii) Benzylamine substitution at TQ's carbon-3 failed to enhance anticancer activity.


Assuntos
Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Aneuploidia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HCT116 , Humanos , Células MCF-7 , NAD(P)H Desidrogenase (Quinona)/metabolismo , Nigella sativa/química
5.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918814

RESUMO

Cardamonin is a polyphenolic natural product that has been shown to possess cytotoxic activity against a variety of cancer cell lines. We previously reported the semi-synthesis of a novel Cu (II)-cardamonin complex (19) that demonstrated potent antitumour activity. In this study, we further investigated the bioactivity of 19 against MDA-MB-468 and PANC-1 cancer cells in an attempt to discover an effective treatment for triple-negative breast cancer (TNBC) and pancreatic cancer, respectively. Results revealed that 19 abolished the formation of MDA-MB-468 and PANC-1 colonies, exerted growth-inhibitory activity, and inhibited cancer cell migration. Further mechanistic studies showed that 19 induced DNA damage resulting in gap 2 (G2)/mitosis (M) phase arrest and microtubule network disruption. Moreover, 19 generated reactive oxygen species (ROS) that may contribute to induction of apoptosis, corroborated by activation of caspase-3/7, PARP cleavage, and downregulation of Mcl-1. Complex 19 also decreased the expression levels of p-Akt and p-4EBP1, which indicates that the compound exerts its activity, at least in part, via inhibition of Akt signalling. Furthermore, 19 decreased the expression of c-Myc in PANC-1 cells only, which suggests that it may exert its bioactivity via multiple mechanisms of action. These results demonstrate the potential of 19 as a therapeutic agent for TNBC and pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Chalconas/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalconas/química , Complexos de Coordenação/química , Cobre/química , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Dano ao DNA , Regulação para Baixo/efeitos dos fármacos , Histonas/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
J Control Release ; 323: 549-564, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32371266

RESUMO

Triple negative or basal-like breast cancer (TNBC) is characterised by aggressive progression, lack of standard therapies and poorer overall survival rates for patients. The bad prognosis, high rate of relapse and resistance against anticancer drugs have been associated with a highly abnormal loss of redox control in TNBC cells. Here, we developed docetaxel (DTX)-loaded micellar-like nanoparticles (MLNPs), designed to address the aberrant TNBC biology through the placement of redox responsive cross-links designed into a terpolymer. The MLNPs were derived from poly(ethyleneglycol)-b-poly(lactide)-co-poly(N3-α-ε-caprolactone) with a disulfide linker pendant from the caprolactone regions in order to cross-link adjacent chains. The terpolymer contained both polylactide and polycaprolactone to provide a balance of accessibility to reductive agents necessary to ensure stability in transit, but rapid micellar breakdown and concomitant drug release, when in breast cancer cells with increased levels of reducing agents. The empty MLNPs did not show any cytotoxicity in vitro in 2D monolayers of MDA-MB-231 (triple negative breast cancer), MCF7 (breast cancer) and MCF10A (normal breast epithelial cell line), whereas DTX-loaded reducible crosslinked MLNPs exhibited higher cytotoxicity against TNBC and breast cancer cells which present high intracellular levels of glutathione. Crosslinked and non-crosslinked MLNPs showed high and concentration-dependent cellular uptake in monolayers and tumour spheroids, including when assessed in co-cultures of TNBC cells and cancer-associated fibroblasts. DTX loaded crosslinked MLNPs showed the highest efficacy against 3D spheroids of TNBC, in addition the MLNPs also induced higher levels of apoptosis, as assessed by annexin V/PI assays and increased caspase 3/7 activity in MDA-MB-231 cells in comparison to cells treated with DTX-loaded un-crosslinked MLNP (used as a control) and free DTX. Taken together these data demonstrate that the terpolymer micellar-like nanoparticles with reducible crosslinks have high efficacy in both 2D and 3D in vitro cancer models by targeting the aberrant biology, i.e. loss of redox control of this type of tumour, thus may be promising and effective carrier systems for future clinical applications in TNBC.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Docetaxel/uso terapêutico , Humanos , Micelas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
7.
Biochim Biophys Acta Bioenerg ; 1860(8): 628-639, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229569

RESUMO

Trans-plasma membrane electron transfer (tMPET) is a process by which reducing equivalents, either electrons or reductants like ascorbic acid, are exported to the extracellular environment by the cell. TPMET is involved in a number of physiological process and has been hypothesised to play a role in the redox regulation of cancer metabolism. Here, we use a new electrochemical assay to elucidate the 'preference' of cancer cells for different trans tPMET systems. This aids in proving a biochemical framework for the understanding of tPMET role, and for the development of novel tPMET-targeting therapeutics. We have delineated the mechanism of tPMET in 3 lung cancer cell models to show that the external electron transfer is orchestrated by ascorbate mediated shuttling via tPMET. In addition, the cells employ a different, non-shuttling-based mechanism based on direct electron transfer via Dcytb. Results from our investigations indicate that tPMETs are used differently, depending on the cell type. The data generated indicates that tPMETs may play a fundamental role in facilitation of energy reprogramming in malignant cells, whereby tPMETs are utilised to supply the necessary energy requirement when mitochondrial stress occurs. Our findings instruct a deeper understanding of tPMET systems, and show how different cancer cells may preferentially use distinguishable tPMET systems for cellular electron transfer processes.


Assuntos
Membrana Celular/metabolismo , Transporte de Elétrons , Neoplasias Pulmonares/patologia , Ácido Ascórbico/metabolismo , Linhagem Celular Tumoral , Grupo dos Citocromos b , Metabolismo Energético , Humanos , Neoplasias Pulmonares/metabolismo , Oxirredução , Oxirredutases
8.
Cancer Lett ; 453: 57-73, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30930233

RESUMO

Natural products possess a significant role in anticancer therapy and many currently-used anticancer drugs are of natural origin. Cerberin (CR), a cardenolide isolated from the fruit kernel of Cerbera odollam, was found to potently inhibit cancer cell growth (GI50 values < 90 nM), colony formation and migration. Significant G2/M cell cycle arrest preceded time- and dose-dependent apoptosis-induction in human cancer cell lines corroborated by dose-and time-dependent PARP cleavage and caspase 3/7 activation, in addition to reduced Bcl-2 and Mcl-1 expression. CR potently inhibited PI3K/AKT/mTOR signalling depleting polo-like kinase 1 (PLK-1), c-Myc and STAT-3 expression. Additionally, CR significantly increased the generation of reactive oxygen species (ROS) producing DNA double strand breaks. Preliminary in silico biopharmaceutical assessment of CR predicted >60% bioavailability and rapid absorption; doses of 1-10 mg/kg CR were predicted to maintain efficacious unbound plasma concentrations (>GI50 value). CR's potent and selective anti-tumour activity, and its targeting of key signalling mechanisms pertinent to tumourigenesis support further preclinical evaluation of this cardiac glycoside.


Assuntos
Cardenolídeos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Células A549 , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cardenolídeos/química , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Células HCT116 , Células HT29 , Células Hep G2 , Humanos , Células MCF-7 , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo
9.
J Control Release ; 286: 10-19, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30016732

RESUMO

The intestinal lymphatic system plays an important role in the pathophysiology of multiple diseases including lymphomas, cancer metastasis, autoimmune diseases, and human immunodeficiency virus (HIV) infection. It is thus an important compartment for delivery of drugs in order to treat diseases associated with the lymphatic system. Lipophilic prodrug approaches have been used in the past to take advantage of the intestinal lymphatic transport processes to deliver drugs to the intestinal lymphatics. Most of the approaches previously adopted were based on very bulky prodrug moieties such as those mimicking triglycerides (TG). We now report a study in which a lipophilic prodrug approach was used to efficiently deliver bexarotene (BEX) and retinoic acid (RA) to the intestinal lymphatic system using activated ester prodrugs. A range of carboxylic ester prodrugs of BEX were designed and synthesised and all of the esters showed improved association with chylomicrons, which indicated an improved potential for delivery to the intestinal lymphatic system. The conversion rate of the prodrugs to BEX was the main determinant in delivery of BEX to the intestinal lymphatics, and activated ester prodrugs were prepared to enhance the conversion rate. As a result, an 4-(hydroxymethyl)-1,3-dioxol-2-one ester prodrug of BEX was able to increase the exposure of the mesenteric lymph nodes (MLNs) to BEX 17-fold compared to when BEX itself was administered. The activated ester prodrug approach was also applied to another drug, RA, where the exposure of the MLNs was increased 2.4-fold through the application of a similar cyclic activated prodrug. Synergism between BEX and RA was also demonstrated in vitro by cell growth inhibition assays using lymphoma cell lines. In conclusion, the activated ester prodrug approach results in efficient delivery of drugs to the intestinal lymphatic system, which could benefit patients affected by a large number of pathological conditions.


Assuntos
Antineoplásicos/administração & dosagem , Bexaroteno/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Mucosa Intestinal/metabolismo , Sistema Linfático/metabolismo , Pró-Fármacos/administração & dosagem , Tretinoína/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Bexaroteno/análogos & derivados , Bexaroteno/farmacocinética , Esterificação , Linfonodos/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Ratos Sprague-Dawley , Distribuição Tecidual , Tretinoína/análogos & derivados , Tretinoína/farmacocinética
10.
Sci Rep ; 8(1): 10617, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006510

RESUMO

The jerantinine family of Aspidosperma indole alkaloids from Tabernaemontana corymbosa are potent microtubule-targeting agents with broad spectrum anticancer activity. The natural supply of these precious metabolites has been significantly disrupted due to the inclusion of T. corymbosa on the endangered list of threatened species by the International Union for Conservation of Nature. This report describes the asymmetric syntheses of (-)-jerantinines A and E from sustainably sourced (-)-tabersonine, using a straight-forward and robust biomimetic approach. Biological investigations of synthetic (-)-jerantinine A, along with molecular modelling and X-ray crystallography studies of the tubulin-(-)-jerantinine B acetate complex, advocate an anticancer mode of action of the jerantinines operating via microtubule disruption resulting from binding at the colchicine site. This work lays the foundation for accessing useful quantities of enantiomerically pure jerantinine alkaloids for future development.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Alcaloides Indólicos/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos Fitogênicos/síntese química , Linhagem Celular Tumoral , Colchicina/farmacologia , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Espécies em Perigo de Extinção , Química Verde , Humanos , Alcaloides Indólicos/síntese química , Alcaloides Indólicos/química , Alcaloides Indólicos/isolamento & purificação , Microtúbulos/química , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Modelos Moleculares , Quinolinas/química , Quinolinas/isolamento & purificação , Sementes/química , Tabernaemontana/química , Tubulina (Proteína)/química , Moduladores de Tubulina/farmacologia , Voacanga/química
11.
Fitoterapia ; 125: 161-173, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29355749

RESUMO

Cardamonin is a natural chalcone that has been shown to exhibit high anticancer activity. In an attempt to discover analogues of cardamonin with enhanced anticancer activity, 19 analogues were synthesized and tested against A549 and HK1 cell lines. Results of the MTS cell viability assay showed that several derivatives possessed cytotoxic activities that were several-fold more potent than cardamonin. SAR analysis showed the importance of the ketone and alkene groups for bioactivity, while substituting cardamonin's phenolic groups with more polar moieties resulted in activity enhancement. As part of the SAR study and further exploration of chemical space, the effect of metal coordination on cytotoxicity was also investigated, but it was only possible to successfully obtain the Cu (II) complex of cardamonin (19). Compound 19 was the most active analogue possessing IC50 values of 13.2µM and 0.7µM against A549 and HK1 cells, corresponding to a 5- and 32-fold increase in activity, respectively. It was also able to significantly inhibit the migration of A549 and HK1 cells. Further mode of action studies have shown that the most active analogue, 19, induced DNA damage resulting in G2/M-phase cell- cycle arrest in both cell lines. These events further led to the induction of apoptosis by the compound via caspase-3/7 and caspase-9 activation, PARP cleavage and downregulation of Mcl-1 expression. Moreover, 19 inhibited the expression levels of p-mTOR and p-4EBP1, which indicated that it exerted its anticancer activity, at least in part, via inhibition of the mTOR signalling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Chalconas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Chalconas/síntese química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
12.
Cell Death Dis ; 8(3): e2677, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300834

RESUMO

Photoreceptor-specific nuclear receptor (PNR/NR2E3) and Tailless homolog (TLX/NR2E1) are human orthologs of the NR2E group, a subgroup of phylogenetically related members of the nuclear receptor (NR) superfamily of transcription factors. We assessed the ability of these NRs to form heterodimers with other members of the human NRs representing all major subgroups. The TLX ligand-binding domain (LBD) did not appear to form homodimers or interact directly with any other NR tested. The PNR LBD was able to form homodimers, but also exhibited robust interactions with the LBDs of peroxisome proliferator-activated receptor-γ (PPARγ)/NR1C3 and thyroid hormone receptor b (TRb) TRß/NR1A2. The binding of PNR to PPARγ was specific for this paralog, as no interaction was observed with the LBDs of PPARα/NR1C1 or PPARδ/NR1C2. In support of these findings, PPARγ and PNR were found to be co-expressed in human retinal tissue extracts and could be co-immunoprecipitated as a native complex. Selected sequence variants in the PNR LBD associated with human retinopathies, or a mutation in the dimerization region of PPARγ LBD associated with familial partial lipodystrophy type 3, were found to disrupt PNR/PPARγ complex formation. Wild-type PNR, but not a PNR309G mutant, was able to repress PPARγ-mediated transcription in reporter assays. In summary, our results reveal novel heterodimer interactions in the NR superfamily, suggesting previously unknown functional interactions of PNR with PPARγ and TRß that have potential importance in retinal development and disease.


Assuntos
Mutação/genética , Receptores Nucleares Órfãos/genética , PPAR gama/genética , Retina/patologia , Doenças Retinianas/genética , Doenças Retinianas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Dimerização , Células HEK293 , Humanos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Conformação Proteica , Receptores beta dos Hormônios Tireóideos/genética , Fatores de Transcrição/genética
13.
Curr Alzheimer Res ; 14(8): 850-860, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28317486

RESUMO

BACKGROUND: In addition to cognitive decline, Alzheimer's Disease (AD) is also characterized by agitation and disruptions in activity and sleep. These symptoms typically occur in the evening or night and have been referred to as 'sundowning'. They are especially difficult for carers and there are no specific drug treatments. There is increasing evidence that these symptoms reflect pathology of circadian rhythm generation and transmission. OBJECTIVE: We investigated whether a transgenic mouse model relevant to AD (APPswe/PS1dE9) exhibits circadian alterations in locomotor activity in their home cage and whether expression of clock genes involved in the regulation of the circadian cycle is abnormal in the hippocampus and medulla-pons brain regions isolated from these mice. RESULTS: In 2month old female mice the APPswe/PS1dE9 transgene alters levels and patterns in circadian rhythm of locomotor activity. Expression of the clock genes Per1, Per2, Cry1 and Cry2 was found to increase at night compared to day in wild-type control mice in the medulla/pons. This effect was blunted for Cry1 and Cry2 gene expression in APPswe/PS1dE9. CONCLUSION: This study suggests altered circadian regulation of locomotor activity is abnormal in female APPswe/ PS1dE9 mice and that this alteration has biomolecular analogies in a widely available model of AD. The early age at which these effects are manifest suggests that these circadian effects may precede plaque development. The APPswe/PS1dE9 mouse genetic model may have potential to serve as a tool in understanding the neuropathology of circadian abnormalities in AD and as a model system to test novel therapeutic agents for these symptoms.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/metabolismo , Ritmo Circadiano/genética , Regulação da Expressão Gênica/genética , Locomoção/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ritmo Circadiano/fisiologia , Criptocromos , Modelos Animais de Doenças , Feminino , Genótipo , Locomoção/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Circadianas Period , Presenilina-1/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
14.
Biomater Sci ; 5(3): 532-550, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28124699

RESUMO

Polymer micelles have emerged as promising carriers for controlled release applications, however, several limitations of micelle-based drug delivery have also been reported. To address these issues, we have synthesized a functional biodegradable and cytocompatible block copolymer based on methoxypoly(ethyleneglycol)-b-poly(ε-caprolactone-co-α-azido-ε-caprolactone) (mPEG-b-poly(εCL-co-αN3εCL)) as a precursor of reduction sensitive core-crosslinked micelles. The synthesized polymer was formulated as micelles using a dialysis method and loaded with the anti-inflammatory and anti-cancer drug methotrexate (MTX). The micellar cores were subsequently crosslinked at their pendent azides by a redox-responsive bis(alkyne). The size distributions and morphology of the polymer micelles were assessed using dynamic light scattering (DLS) and transmission electron microscopy, and drug release assays were performed under simplified (serum free) physiological and reductive conditions. Cellular uptake studies in human breast cancer cells were performed using Oregon-green loaded core-crosslinked micelles. The MTX-loaded core-crosslinked micelles were assessed for their effects on metabolic activity in human breast cancer (MCF-7) cells by evaluating the reduction of the dye MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. The apoptosis inducing potential of MTX-loaded core-crosslinked micelles was analysed using Hoechst/propidium iodide (PI) and annexin-V/PI assays. The data from these experiments indicated that drug release from these cross-linked micelles can be controlled and that the redox-responsive micelles are more effective carriers for MTX than non-crosslinked analogues and the free drug in the cell-lines tested.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Preparações de Ação Retardada/química , Metotrexato/administração & dosagem , Micelas , Polímeros/química , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caproatos/química , Liberação Controlada de Fármacos , Feminino , Humanos , Lactonas/química , Células MCF-7 , Metotrexato/farmacocinética , Metotrexato/farmacologia , Oxirredução , Polietilenoglicóis/química
15.
Adv Healthc Mater ; 4(18): 2816-21, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26592186

RESUMO

Anticancer drug Gefitinib encapsulated within human heavy chain apoferritin by diffusion allows pH-controlled sustained release of cargo. The combination of increased cellular uptake, and potent and enhanced antitumor activity against the HER2 overexpressing SKBR3 cell line compared to Gefitinib alone, makes it a promising carrier for delivery of drugs to tumor sites.


Assuntos
Apoferritinas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Gefitinibe , Humanos
16.
Am J Bot ; 102(8): 1323-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26290555

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Shade tolerance is a key trait promoting invasive plant performance in forest interiors. Rosa multiflora is a problematic invasive shrub in the northeastern United States, occurring in edge habitats and encroaching into forests. Our objective was to evaluate the shade tolerance of R. multiflora to assess how ecophysiological traits may facilitate its spread into forest interiors.• METHODS: In the field, we documented shrub and seed bank density, fecundity, phenology, and seasonal photosynthetic rates of R. multiflora in contrasting light environments. In the greenhouse, we exposed seedlings to simulated canopy treatments by altering spectral quantity and quality, mimicking habitats ranging from open fields to forest interiors.• KEY RESULTS: In the field, shrub density and fecundity of R. multiflora sharply increased with light availability. However, no differences were observed between forest edge and interior seed banks. Rosa multiflora initiated leaf growth earlier and retained leaves longer than canopy vegetation and tended to have higher photosynthetic rates in spring and fall. In the greenhouse, plants displayed shade-avoidance traits, decreasing relative growth rate and reducing branching, while increasing elongation and showing no change in light response curve parameters.• CONCLUSIONS: In deciduous forest understories, R. multiflora appears to make use of a lengthened growing season in spring and fall, and therefore, substantial growth and spread through intact forests appears dependent on canopy gaps. Management should focus on reducing edge populations to reduce spread into the interior and on monitoring newly created canopy gaps.


Assuntos
Ecossistema , Espécies Introduzidas , Fotossíntese , Rosa/fisiologia , Luz , Ohio , Reprodução , Rosa/anatomia & histologia , Rosa/crescimento & desenvolvimento
18.
Nucleic Acids Res ; 42(2): 822-35, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24150941

RESUMO

Histone tail modifications control many nuclear processes by dictating the dynamic exchange of regulatory proteins on chromatin. Here we report novel insights into histone H3 tail structure in complex with the double PHD finger (DPF) of the lysine acetyltransferase MOZ/MYST3/KAT6A. In addition to sampling H3 and H4 modification status, we show that the DPF cooperates with the MYST domain to promote H3K9 and H3K14 acetylation, although not if H3K4 is trimethylated. Four crystal structures of an extended DPF alone and in complex with unmodified or acetylated forms of the H3 tail reveal the molecular basis of crosstalk between H3K4me3 and H3K14ac. We show for the first time that MOZ DPF induces α-helical conformation of H3K4-T11, revealing a unique mode of H3 recognition. The helical structure facilitates sampling of H3K4 methylation status, and proffers H3K9 and other residues for modification. Additionally, we show that a conserved double glycine hinge flanking the H3 tail helix is required for a conformational change enabling docking of H3K14ac with the DPF. In summary, our data provide the first observations of extensive helical structure in a histone tail, revealing the inherent ability of the H3 tail to adopt alternate conformations in complex with chromatin regulators.


Assuntos
Histona Acetiltransferases/química , Histonas/química , Acetilação , Sequência de Aminoácidos , Glicina/química , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
19.
Nucleic Acids Res ; 41(21): 9663-79, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23975195

RESUMO

Despite their physiological importance, selective interactions between nuclear receptors (NRs) and their cofactors are poorly understood. Here, we describe a novel signature motif (F/YSXXLXXL/Y) in the developmental regulator BCL11A that facilitates its selective interaction with members of the NR2E/F subfamily. Two copies of this motif (named here as RID1 and RID2) permit BCL11A to bind COUP-TFs (NR2F1;NR2F2;NR2F6) and Tailless/TLX (NR2E1), whereas RID1, but not RID2, binds PNR (NR2E3). We confirmed the existence of endogenous BCL11A/TLX complexes in mouse cortex tissue. No interactions of RID1 and RID2 with 20 other ligand-binding domains from different NR subtypes were observed. We show that RID1 and RID2 are required for BCL11A-mediated repression of endogenous γ-globin gene and the regulatory non-coding transcript Bgl3, and we identify COUP-TFII binding sites within the Bgl3 locus. In addition to their importance for BCL11A function, we show that F/YSXXLXXL/Y motifs are conserved in other NR cofactors. A single FSXXLXXL motif in the NR-binding SET domain protein NSD1 facilitates its interactions with the NR2E/F subfamily. However, the NSD1 motif incorporates features of both LXXLL and FSXXLXXL motifs, giving it a distinct NR-binding pattern in contrast to other cofactors. In summary, our results provide new insights into the selectivity of NR/cofactor complex formation.


Assuntos
Fator II de Transcrição COUP/metabolismo , Proteínas de Transporte/química , Proteínas Nucleares/química , Receptores Nucleares Órfãos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Fator II de Transcrição COUP/química , Proteínas de Transporte/metabolismo , Linhagem Celular , Sequência Conservada , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Receptores Nucleares Órfãos/química , Estrutura Terciária de Proteína , Proteínas Repressoras , gama-Globinas/genética
20.
PLoS One ; 8(2): e58052, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460923

RESUMO

Preferentially expressed antigen in melanoma (PRAME) has been described as a cancer-testis antigen and is associated with leukaemias and solid tumours. Here we show that PRAME gene transcription in leukaemic cell lines is rapidly induced by exposure of cells to bacterial PAMPs (pathogen associated molecular patterns) in combination with type 2 interferon (IFNγ). Treatment of HL60 cells with lipopolysaccharide or peptidoglycan in combination with IFNγ resulted in a rapid and transient induction of PRAME transcription, and increased association of PRAME transcripts with polysomes. Moreover, treatment with PAMPs/IFNγ also modulated the subcellular localisation of PRAME proteins in HL60 and U937 cells, resulting in targeting of cytoplasmic PRAME to the Golgi. Affinity purification studies revealed that PRAME associates with Elongin B and Elongin C, components of Cullin E3 ubiquitin ligase complexes. This occurs via direct interaction of PRAME with Elongin C, and PRAME colocalises with Elongins in the Golgi after PAMP/IFNγ treatment. PRAME was also found to co-immunoprecipitate core histones, consistent with its partial localisation to the nucleus, and was found to bind directly to histone H3 in vitro. Thus, PRAME is upregulated by signalling pathways that are activated in response to infection/inflammation, and its product may have dual functions as a histone-binding protein, and in directing ubiquitylation of target proteins for processing in the Golgi.


Assuntos
Antígenos de Neoplasias/metabolismo , Bactérias/metabolismo , Complexo de Golgi/metabolismo , Interferon gama/farmacologia , Receptores de Reconhecimento de Padrão/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Antígenos de Neoplasias/genética , Linhagem Celular , Elonguina , Complexo de Golgi/efeitos dos fármacos , Histonas/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Espectrometria de Massas , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...